90 research outputs found

    PHARMACOGNOSTICAL AND PHYTO-CHEMICAL EVALUATION OF PIPPALYADI YOGA: A POLYHERBAL FORMULATION

    Get PDF
    Pippalyadi Yoga is Churna Kalpana described by Acharya Chakrapani in Vandhyatva (infertility). Ovulatory dysfunction is the prime cause of Infertility among the world, Pippalyadi Yoga is useful in patients especially having Anovulation which is known as Abeejatva in Ayurveda. So a new pharmaceutical preparation Pippalyadi Yoga in the form of Churna (powder) was tried to standardize which is economical in terms of time and machinery usage. Pharmacognostical and phyto-chemical observations revealed the specific characters of all active constituents used in the preparation. The present work was carried out to standardize the finished product of Pippalyadi Yoga to confirm its identity, quality and purity. The presence of stone cells, oil globules, olio resin cells, parenchymatous cells, oval & beaker shaped starch grains, pollen grains were the characteristic features observed in the microscopy of the prepared drug. Phyto-chemical analysis showed Loss on drying 10.07 % w/w, ash value 6.55 %w/w, water soluble extract 14 % w/w, methanol soluble 13.40 % w/w, particle consistency above 60 mesh 4.10 % w/w, between 60-85 mesh 9.20 % w/w, between 85-120 mesh 13.30 % w/w & below 120 mesh 73.37 % w/w & pH 5.0. HPTLC of Pippalyadi Yoga is the preliminary quantitative analysis which shows 8 prominent spots at Rf. 0.09, 0.61, 0.67, 0.74, 0.80, 0.86, 0.91, 1.00 in UV 254 nm and 7 prominent spots at Rf. 0.06, 0.17, 0.63, 0.67, 0.75, 0.82, 0.88 in UV 366 nm. Pippalyadi Yoga, a polyherbal formulation of 4 ingredients was prepared and HPTLC finger print profile was developed and it can be considered pharmacopial standard of Pippalyadi Yoga

    Development of Novel Interspecific Fertile Cytotype (4X) Of \u3cem\u3ePennisetum glaucum\u3c/em\u3e X \u3cem\u3ePennisetum purpureum\u3c/em\u3e Utilizing Modified Ploidy Coupled With Embryo Rescue Technique

    Get PDF
    Interspecific hybrids of genus Pennisetum (P. glaucum x P. purpureum) is the one of the most popular manmade hybrid. It combines the unique features of both P. glaucum (Pearl millet; Bajra) and P. purpureum (Napier; Elephant grass) species, which makes it more resilient to harsh environments with superior fodder quality. Due to ploidy level variation among the parents, these hybrids are sterile and propagated vegetatively only. To overcome this, attempts were made in the present study by exploring the feasibility of novel tetraploid pearl millet (2n=4x=28; Tetra 1; INGR 09047) developed at IGFRI, as a female parent in crossing program involving different Napier genotypes as male parent. Due to limited crossability and hybrid necrosis issues among countless crosses (\u3e 1000), only 1% seed set was initially recorded that too in shriveled state and the developing embryos were aborted after 10-14 days of pollination and fertilization. To save these, embryo rescue technique was standardized and the developing embryos were dissected out aseptically and rescued after 8-10 days of pollination. Continuous crossing programme along with screening of large tissue culture raised nurseries resulted in development of a novel tetraploid seed producing BN hybrid (TBN-20-15) along with 14 novel sterile tetraploid BN hybrids. Presence of univalent chromosomes leads to sterility while proper pairing between parents of TBN-20-15 hybrid have significant effect on fertility. The fertile hybrid is able to produce \u3e15,000-20,000 seeds throughout the year with 80-90% seed germination ability. Their hybridity was confirmed by morphology, molecular and cytogenetic studies. This fertile tetraploid BN hybrid (TBN-20-15) reported for the first time globally will be very helpful in easy and cost-effective dissemination of this highly potential forage crop to the farmer’s field. It has the potential to be the game changer in biofuel production, grassland rejuvenation programs besides bridging the fodder demand supply deficit

    Interferometric imaging with the 32 element Murchison Wide-field Array

    Get PDF
    The Murchison Wide-field Array (MWA) is a low frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of re-ionisation (EOR) and to probe the structure of the solar corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles grouped into 512 tiles, and be capable of imaging the sky south of 40 degree declination, from 80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a resolution of a few arcminutes. A 32-station prototype of the MWA has been recently commissioned and a set of observations taken that exercise the whole acquisition and processing pipeline. We present Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees wide centered on Pictoris A. These images demonstrate the capacity and stability of a real-time calibration and imaging technique employing the weighted addition of warped snapshots to counter extreme wide field imaging distortions.Comment: Accepted for publication in PASP. This is the draft before journal typesetting corrections and proofs so does contain formatting and journal style errors, also has with lower quality figures for space requirement

    The Murchison Widefield Array

    Get PDF
    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imaging software, which is currently being used to process an FM-band survey of the entire southern sky.Comment: Accepted for publication in Proceedings of Science [PoS(RFI2010)016]. 6 pages and 3 figures. Presented at RFI2010, the Third Workshop on RFI Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE

    First Spectroscopic Imaging Observations of the Sun at Low Radio Frequencies with the Murchison Widefield Array Prototype

    Get PDF
    We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9–201.6 MHz. Though our observing period is characterized as a period of “low” to “medium” activity, one broadband emission feature and numerous short-lived, narrowband, non-thermal emission features are evident. Our data represent a significant advance in low radio frequency solar imaging, enabling us to follow the spatial, spectral, and temporal evolution of events simultaneously and in unprecedented detail. The rich variety of features seen here reaffirms the coronal diagnostic capability of low radio frequency emission and provides an early glimpse of the nature of radio observations that will become available as the next generation of low-frequency radio interferometers come online over the next few years

    Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor

    Get PDF
    Lipases are versatile catalysts with many applications and can be produced by solid-state fermentation (SSF) using agro-industrial wastes. The aim of this work was to maximize the production of Aspergillus ibericus lipase under SSF of olive pomace (OP) and wheat bran (WB), evaluating the effect on lipase production of C/N ratio, lipids, phenols, content of sugars of substrates and nitrogen source addition. Moreover, the implementation of the SSF process in a packed-bed bioreactor and the improvement of lipase extraction conditions were assessed. Low C/N ratios and high content of lipids led to maximum lipase production. Optimum SSF conditions were achieved with a C/N mass ratio of 25.2 and 10.2% (w/w) lipids in substrate, by the mixture of OP:WB (1:1) and supplemented with 1.33% (w/w) (NH4)2SO4. Studies in a packed-bed bioreactor showed that the lower aeration rates tested prevented substrate dehydration, improving lipase production. In this work, the important role of Triton X-100 on lipase extraction from the fermented solid substrate has been shown. A final lipase activity of 223 ± 5 U g1 (dry basis) was obtained after 7 days of fermentation.Felisbela Oliveira acknowledges the financial support from Fundação para a Ciência e Tecnologia (FCT) of Portugal through grant SFRH/BD/87953/2012. José Manuel Salgado was supported by grant CEB/N2020–INV/01/2016 from Project ‘‘BIOTECNORTE-Underpinning Biotechnology to foster the north of Portugal bioeconomy’’ (NORTE-01-0145-FEDER-000004). Luı ´s Abrunhosa was supported by grant UMINHO/BPD/51/2015 from project UID/BIO/04469/2013 financed by FCT/MEC (OE). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER006684) and BioTecNorte operation (NORTE-01-0145-FEDER000004) funded by the European Regional Development Fund under the scope of Norte2020–Programa Operacional Regional do Norte. Noelia Pérez-Rodríguez acknowledges the financial support of FPU fellowship from the Spanish Ministry of Education, Culture and Sports. The authors thank the Spanish Ministry of Economy and Competitiveness for the financial support of this work (Project CTQ2015-71436-C2-1-R), which has partial financial support from the FEDER funds of the European Union.info:eu-repo/semantics/publishedVersio

    High-Performance Computing for SKA Transient Search: Use of FPGA based Accelerators -- a brief review

    Full text link
    This paper presents the High-Performance computing efforts with FPGA for the accelerated pulsar/transient search for the SKA. Case studies are presented from within SKA and pathfinder telescopes highlighting future opportunities. It reviews the scenario that has shifted from offline processing of the radio telescope data to digitizing several hundreds/thousands of antenna outputs over huge bandwidths, forming several 100s of beams, and processing the data in the SKA real-time pulsar search pipelines. A brief account of the different architectures of the accelerators, primarily the new generation Field Programmable Gate Array-based accelerators, showing their critical roles to achieve high-performance computing and in handling the enormous data volume problems of the SKA is presented here. It also presents the power-performance efficiency of this emerging technology and presents potential future scenarios.Comment: Accepted for JoAA, SKA Special issue on SKA (2022

    p53 Target Gene SMAR1 Is Dysregulated in Breast Cancer: Its Role in Cancer Cell Migration and Invasion

    Get PDF
    Tumor suppressor SMAR1 interacts and stabilizes p53 through phosphorylation at its serine-15 residue. We show that SMAR1 transcription is regulated by p53 through its response element present in the SMAR1 promoter. Upon Doxorubicin induced DNA damage, acetylated p53 is recruited on SMAR1 promoter that allows activation of its transcription. Once SMAR1 is induced, cell cycle arrest is observed that is correlated to increased phospho-ser-15-p53 and decreased p53 acetylation. Further we demonstrate that SMAR1 expression is drastically reduced during advancement of human breast cancer. This was correlated with defective p53 expression in breast cancer where acetylated p53 is sequestered into the heterochromatin region and become inaccessible to activate SMAR1 promoter. In a recent report we have shown that SMAR1 represses Cyclin D1 transcription through recruitment of HDAC1 dependent repressor complex at the MAR site of Cyclin D1 promoter. Here we show that downmodulation of SMAR1 in high grade breast carcinoma is correlated with upregulated Cyclin D1 expression. We also established that SMAR1 inhibits tumor cell migration and metastases through inhibition of TGFβ signaling and its downstream target genes including cutl1 and various focal adhesion molecules. Thus, we report that SMAR1 plays a central role in coordinating p53 and TGFβ pathways in human breast cancer

    First Spectroscopic Imaging Observations of the Sun at Low Radio Frequencies with the Murchison Widefield Array Prototype

    Get PDF
    We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9– 201.6 MHz. Though our observing period is characterized as a period of “low” to “medium” activity, one broadband emission feature and numerous short-lived, narrowband, non-thermal emission features are evident. Our data represent a significant advance in low radio frequency solar imaging, enabling us to follow the spatial, spectral, and temporal evolution of events simultaneously and in unprecedented detail. The rich variety of features seen here reaffirms the coronal diagnostic capability of low radio frequency emission and provides an early glimpse of the nature of radio observations that will become available as the next generation of low-frequency radio interferometers come online over the next few years
    corecore